タニヤマ送風機

取 扱 説 明 書

(ベルト駆動形)

安全に関するご注意

- このたびはタニヤマ送風機をご採用いただきまして、誠にありがとうございます。
- ・ご使用になる前に必ず、この安全上のご注意と取扱説明書をよくお読みのうえ、正しくご使用下さい。 そのあと、保守・点検の場合など必要なときに、いつでも 見られるよう大切に保管してください。

このたびは、**タニヤマ送風機**を、ご採用いただきまして、ありがとう ございます。

タニヤマ送風機は、性能的にも機械的にもきわめて優秀でかつ丈夫にできております。しかしながら、その取扱いおよび使用方法を誤りますと思わぬ故障を引き起こしますので、本取扱説明書をご活用いただき、点検、保守、取扱いなどにご注意くださるようお願い申し上げます。

1. 点 検

送風機が現場へ搬入されましたら、ただちに次の点をお調べください。

- (1) 送風機の形式・吐出方向がご注文どおりのものかどうか。
- (2) 銘板の空気量・静圧は所定どおりか。
- (3) 輸送中の事故で破損していないか。
- (4) Vプーリ又は羽根車を手で回して引っかかるところはないか。
- (5) ケーシング内に異物が入っていないか。 その他、もし不具合なところがありましたら、弊社営業代理店へご 連絡ください。

2. 保管

送風機をすぐに取付・運転しない場合は次の点にご注意ください。

- (1) 保管は屋内で通気性の良い乾燥した場所を選んでください。
- (2) 保管中は錆の発生、部品の損傷など定期的に点検してください。
- (3) 保管中は1ヶ月に1~2度、軸を10回転程度手回しして軸受の 潤滑を行ってください。保管期間が長くなりますと、ベアリング 内のグリスに偏りが生じ、グリスがベアリング内に行き渡らず、 ベアリングの破損、異音発生の原因になるおそれがあります。
- (4) 据付後、長期間にわたって運転を停止する場合なども同様に取り 扱ってください。

3. すえつけ

(1) すえつけ場所

大抵の場所に使っても故障のないよう丈夫にできておりますが、 なるべく点検の容易な場所をえらんでください。酸・アルカリ・高 温・高湿の所には汎用送風機をご使用にならないようにしてくださ い。

(2) 基 礎

一般にはコンクリートで強固につくるのが理想的ですが、場所の 関係でコンクリートの基礎ができないときは、鉄骨か丈夫な木材に 取付ボルトで確実に取付けてください。基礎が弱かったり取付けボ ルトがよく締っていないと振動を生じて、送風機や建物に悪影響を およぼし、環境問題になる恐れがあるので、十分強固なものにする よう注意してください。

(3) すえつけ方向とレベル

送風機は普通、主軸を水平方向にして取付けるよう製作してありますが、もし異った方向で取付けをされる場合は、その可否をお問合せください。送風機のレベルは、あまり厳密な精度を必要としませんが、軸受に大きなスラスト荷重がかからないように注意してください。

なお、送風機のレベルを出す場合、普通は主軸に水準器を当てて みますが、小形のもの、または主軸を利用できない場合は、おもり 付きの糸をVプーリの側面にたらし、その直角度をみてください。 レベル調整には、鉄製クサビを用いると便利です。

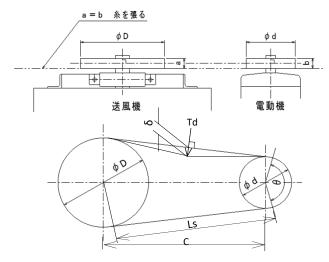
(4) 防 振

送風機や電動機の振動が他へ伝わるのを防ぐために、送風機ベースと基礎との間に防振材を用います。

防振材には、一般に防振ゴムやスプリング等が用いられておりますが、必ず送風機と電動機を共通架台の上に取付け、その架台と基礎との間に防振材を入れるようにしてください。

4. 電動機との連結

Vベルト掛け


図1のように、送風機と電動機の軸を平行にして、両方のVプーリを結ぶ線が直角になるように取り付けてください。

この位置をきめるには、Vプーリの側面に糸を張り、両方のVプーリの側面が一直線(糸線)上になるようにします。

軸の平行度・偏心度は 1/3°以内に調整してください。

なお、プーリ径の比が大きい場合、小プーリの接触角度 θ を確保するため、軸間距離 C は1.45 (D-d) 以上が望ましい。

図1 芯 出 し

5. Vベルトの張り方

- (1) Vベルトは、張り過ぎると軸受をいため、ゆるいと滑ってVベルトがいたんだり、はずれたりしますから十分気を付けてください。
- (2) ベルトテンションは、ベルトスパン: Ls の中央でバネはかりを掛けベルトを垂直方向に引っ張り (又は押し) ベルトのたわみる (たわみ量 mm)を所定の値にした時の荷重 Td (たわみ荷重 N) が規定の数値である事を確認する。数値は送風機の性能、プーリの組合せ、ベルトの種類により異なります。

ベルトテンションの確認にはペンシル型テンションメータの利用が便利です。

※たわみ、たわみ荷重はファン銘板にて確認下さい。

- (3) ベルトテンションが規定値から外れている場合は、電動機固定ボルトを緩めスライドベースにて電動機をスライドさせて調整を行って下さい。
- (4) Vベルトの新しい間(ファン納入直後またはベルト交換後)は、約1ヶ月程度は伸びがはげしい場合が多いですから、常に注意して(3)の方法で調節してください。

6. 運 転

(1) 初めて運転をするときは、スイッチを入れる前に次の点を確認してください。

羽根車にダスト等異物が付着し吸込口との隙間のない状態になると、送風機の運転時に発火等の事故に至る恐れがあります。

- I) Vベルトの張り具合は良いか。
- II) 手で回して引掛るようなところはなくスムーズに回るかどうか。
- Ⅲ)送風機内部に異物が入っていないか。
- IV) 電動機を含む電機部品は、充電部の焼損、ダスト等異物の付着のないことを確認してください。
- (2) 運転に入る時には、スイッチをちょっと入れ、回転方向が正常であるかどうかを確認します。
- (3) 送風機を起動してフル回転になる直前ぐらいで一度スイッチを切って、惰性回転状態において異常がないかどうかを確認してから 正規の運転に入ってください。
- (4) 初めて正規運転に入ったときは、次の状態を点検してください。
 - 1)振動
- Ⅱ)負荷電流
- Ⅲ)回転数
- IV) ベルトの状態
- V) 軸受温度と異常音

7. 運転状態

(1) 異常電流

電流計の指針が一定でなく大きく振れる場合は、送風機または電 動機に何か異常が発生しているものと考え、その対策をこうじる必 要があります。その主な原因として次のような事項があげられます。

- I) Vベルトの張りが弛すぎる
- Ⅱ)羽根車内に異物が入っている。(水、布切れ等)
- Ⅲ) 送風機吸込口気流がかたよっている。(吸込ダクトの形状不良)
- IV) 電動機自体の異常。

(2) 軸受温度

送風機の軸受温度は、周囲の温度に対し $+40 \deg$ 、最高温度は 70 % を限度とします。もし、これ以上になる場合には原則として 次のような事項があげられます。

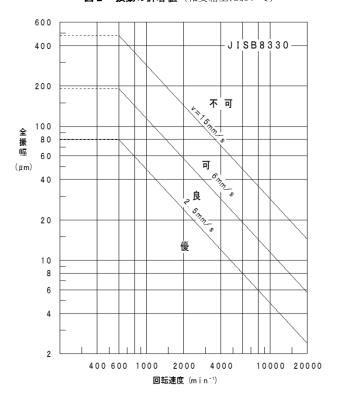
- I) Vベルトの張り過ぎ
- Ⅱ) 羽根車のアンバランス等による振動
- Ⅲ) 潤滑剤の不足、または、過剰或いは異物の混入
- IV) 潤滑剤の不適当或いは劣化
- V) 軸受自体の異常

(3) 振動

振動の大きさは、送風機の用途、構造、据付状態、回転数等により一概にその許容値を決めることはできませんが、原則として、軸受部の最大全振幅が JIS B 8330 における振動の許容値の(良)ライン以下とします。 (図 2 参照)

但し、防振架台上での値は10mm/s以下とします。

送風機の振動発生の原因として、次のような事項があげられます。


- I)回転体のアンバランス。
- Ⅱ) 基礎が弱いか、取付ボルトが緩んでいる。
- Ⅲ)羽根車内に異物が入っている。
- Ⅳ) ケーシング内に水がたまっている。 (ドレン抜き不十分)
- V) 送風機のサージング現象。
- VI) 軸受の異常または軸心の不一致。

8. 送風機の性能低下

現場において送風機の空気量が不足する場合には、原因として次のような事項があげられます。

- (1) サクションベーン・ダンパーの開度不良。
- (2) 羽根車・ケーシング内部に布切れ等の異物が附着している。
- (3) フィルター・ヒーター・クーラー等のつまり、および、よごれ。
- (4) ダクト内に塵埃の堆積による抵抗の増大。
- (5) ケーシング内部にドレンがたまっている。
- (6) 計画抵抗値に対する実際抵抗値の過大。
- (7) ダクト接続不良によるもの。
- (8) 送風機の老朽により羽根車、および、吸込コーンが損傷、または 破損。

図2 振動の許容値(軸受箱上において)

参考 : 全振幅 $a(\mu m)$ と振動速度 v(mm/s) の関係は、次のとおりである。

$$v = \frac{a \, \omega}{2 \times 10^{3}} = \frac{a \, \pi \, N}{6 \times 10^{4}}$$

ここに
$$ω$$
 : 角速度 = $\frac{2\pi N}{60}$ (rad/s)

9. 保 守

一定年数を超えて使用されますと、電動機を含む電 ⚠️ 機部品の経年劣化等による発火等の事故に至る恐れ があります。

羽根車にダスト等異物が付着し吸込口との隙間のな ↑ い状態になると、送風機の運転時に発火等の事故に 至る恐れがあります。

送風機の寿命を左右するものは、その大半が送風機自体の経年腐食 と軸受寿命にありますので、次の事項に注意してください。

また、定期的に点検及び各部品のメンテナンス等を行い、維持管理を 行ってください。

(1) 清 掃

送風機内部を定期的に清掃 (年2回以上が望ましい) するとと もに、必要に応じ再途装を行う。

(2) 電機部品

電動機を含む電機部品は、充電部の焼損、ダスト等異物の付着の ないことを確認してください。

(3) 軸受の潤滑

送風機の軸受は一般にコロガリ軸受を使用し、グリース潤滑を 標準としています。

グリースは一度充填すれば、普通半年から1年位は補給しなく てもよいのですが、運転時間、回転数、軸受の種類その他の諸条 件を十分に考慮しなければなりません。

I) グリースの補給間隔

使用条件によって異なりますが、普通の使用状態の場合は1年 に1回以上、特に使用条件の悪い場合は1年に3回以上の補給を 行ってください。

Ⅱ) グリースの補給法

グリース注入口から補給しても良いのですが、できる限り軸受 箱の蓋をはずして詰め替えるようにしてください。先ず軸受箱内 の劣化したグリースを取り除き、ベアリング内部へグリースを詰 め込みますと、反対側から劣化したグリースが押し出されます。 これを反復して劣化グリースを新しいグリースに取り替えます。

Ⅲ) グリースの補給量(表1参照)

補給量は軸受箱内部空間の 1/3~1/2 程度が適量で、これ以上 詰め過ぎますと、回転により撹拌熱を生じグリースの劣化を早め 稠度も変化して漏れ易くなります。

表 1 グリースの補給量

呼び番号	g	呼び番号	g	呼び番号	g	呼び番号	g
UC 205	2	UC 305	4	SN 505	6	SN 605	10
UC 206	3	UC 306	5	SN 506	8	SN 606	14
UC 207	4	UC 307	7	SN 507	10	SN 607	18
UC 208	5	UC 308	9	SN 508	14	SN 608	24
UC 209	5	UC 309	11	SN 509	18	SN 609	32
UC 210	6	UC 310	14	SN 510	20	SN 610	44
UC 211	7	UC 311	17	SN 511	24	SN 611	50
UC 212	10	UC 312	22	SN 512	34	SN 612	58
UC 213	12	UC 313	26	SN 513	42	SN 613	72
UC 214	14	UC 314	34	-	l	I	-
UC 215	15	UC 315	39	SN 515	48	SN 615	104
UC 216	20	UC 316	46	SN 516	60	SN 616	120
UC 217	24	UC 317	52	SN 517	72	SN 617	150
UC 218	31	UC 318	62	SN 518	96	SN 618	164
		UC 319	75	SN 519	124	SN 619	192
		UC 320	92	SN 520	140	SN 620	240
		UC 321	100	_	_	_	_
		UC 322	130	SN 522	176	SN 622	300
		UC 324	155	SN 524	240	SN 624	380
		UC 326	195	SN 526	260	SN 626	480
		UC 328	240	SN 528	360	SN 628	640
				SN 530	440	SN 630	720

IV) グリース補給時における作業上の注意

補給に当たっては、ゴミや異物が混入したり、汚れた手で取り 扱ったりしないよう注意してください。

また、軸受箱の2分割締付ボルトをあまりきつく締めますと、 内部ベアリングに圧力が加わり、運転に異常をきたす場合があり ますから、特に注意してください。

V) グリースの種類

タニヤマ送風機には、原則として表2に示すグリースを使用し ています。もし、他種のグリースを使用される場合は、これと同 等のものを選ぶように注意してください。

表2 使用グリース

AZ CAZO A							
軸受の種類	メーカ名	グリース名					
ころがり軸受ユニット		アルバニアグリースS2					
自動調心玉軸受	昭和シェル石油						
自動調心ころ軸受							
深みぞ玉軸受	日本グリース	ゴールドNo.2					
円筒ころ軸受	ロボグリース						
低 温 用	協同油脂	マルテンプPSNo.2					
高 速 用	加州伊加						

10. 送風機に関してのお問合せの際の御願い

製品の故障、部品のご注文、その他お問合せの節はお手数でも銘 板に記載してある次の事項をお調べの上、お申し付けいただきたく お願い致します。

1. 型 式

2. 性

3. 製造年月

4. 製造番号

なお、銘板の内容が不明の場合は、判定のつく項目と次の事項を お調べの上ご連絡願います。

1. 送風機吐出口寸法

2. 送風機叶出口方向

3. 羽 根 車形式

4. そ の

送風機についてのご質問、ご相談はご遠慮なく当社営業代理店へ 連絡してください。

11. 送風機の点検・修理

お買い上げいただきました送風機を、いつも良好な状態でご使用 いただくためには、点検チェックが大変重要なことです。

点検・修理につきましては当社営業代理店へご連絡お願いします。